BESS: Energy Saving Solutions for Efficient Energy Management

30 Jun.,2025

 

BESS: Energy Saving Solutions for Efficient Energy Management

Looking Inside a BESS: What a BESS Is and How It Works

A BESS is an energy storage system (ESS) that captures energy from different sources, accumulates this energy, and stores it in rechargeable batteries for later use. Should the need arise, the electrochemical energy is discharged from the battery and supplied to homes, electric vehicles, industrial and commercial facilities.

You can find more information on our web, so please take a look.

A BESS is a compound system comprising hardware components along with low-level and high-level software. The main BESS parts include:

  • A battery system. It contains individual battery cells that convert chemical energy into electrical energy. The cells are arranged in modules that, in their turn, form battery packs.
  • A battery management system (BMS). A BMS ensures the safety of the battery system. It monitors the condition of battery cells, measures their parameters and states, such as state-of-charge (SOC) and state-of-health (SOH), and protects batteries from fires and other hazards.
  • An inverter or a power conversion system (PCS). This converts direct current (DC) produced by batteries into alternating current (AC) supplied to facilities. Battery energy storage systems have bi-directional inverters that allow for both charging and discharging.
  • An energy management system (EMS). This is responsible for monitoring and control of the energy flow within a battery storage system.  An EMS coordinates the work of a BMS, a PCS, and other components of a BESS. By collecting and analyzing energy data, an EMS can efficiently manage the power resources of the system.

Depending on its functionality and operating conditions, a  BESS can also include a range of safety systems, such as a fire control system, a smoke detector, a temperature control system, cooling, heating, ventilation, and air conditioning systems. The safety systems have their own monitoring and control units that provide conditions necessary for the safe operation of a BESS by monitoring its parameters and responding to emergencies.

Apart from electronics, complex BESSs rely on robust software solutions. For example, state-of-the-art systems use machine learning algorithms to optimize energy management. Estimating battery states and characteristics with high accuracy requires reliable algorithms and mathematical models built within BMS software development.

In sum, a BESS collects energy from an electricity grid or renewable power sources, such as solar and wind, and stores it using battery storage technology. Then, batteries discharge and release the energy when necessary—during peak demands, power outages, and in a variety of other applications.

BESSs can accommodate different batteries, including lithium-ion, lead-acid, nickel-cadmium batteries, and others—we’ll elaborate on them later in the article. Every battery type has certain technical specifications that designate BESS uses and affect the efficiency of battery energy storage. The principal battery characteristics embrace:

  • Storage capacity. This is the amount of electric charge stored by a battery or the amount of electricity available in a BESS.
  • Power. This parameter determines the amount of power supplied by a battery or the output power that a BESS can provide.
  • Round-trip efficiency. This displays the ratio of energy delivered by a battery during discharge to the energy supplied to the battery during a charge cycle.
  • Depth of Discharge (DoD). This shows the percentage of energy discharged from a battery relative to its total capacity.
  • Lifetime. This can be defined as the number of charge and discharge cycles of a battery or the amount of energy that a battery can supply during its lifetime (battery throughput).
  • Safety. This is an important characteristic that shows the battery’s compliance with safety requirements, for example, in terms of the battery chemistry.

In addition to the above battery specifications, storage battery systems have other characteristics that describe their performance. For example, response time is the time a BESS needs to move from the idle state and start working at full power. Ramp rate is the rate at which the system can increase or decrease its power output—ramp it up or down, respectively.

BESS Types and Alternatives

BESSs vary depending on the electrochemistry or battery technology they use. Let’s look at the main BESS battery types and opportunities they offer for battery storage solutions.

Lithium-Ion (Li-Ion) Batteries

According to the report prepared by the US Energy Information Administration (EIA), over 90% of a large-scale battery energy storage systems in the USA were powered by lithium-ion batteries. The current global statistics are pretty much the same. This type of rechargeable battery is widely popular in electric vehicles, consumer electronics, and portables, such as smartphones, laptops, tablets, and cameras. Li-ion battery chemistries comprise lithium cobalt oxide, lithium manganese oxide, lithium iron phosphate, lithium nickel manganese cobalt oxide (NMC), and others. The advantages of a Li-ion battery make it one of the leading technologies facilitating the storage of energy. The global lithium-ion battery market is projected to triple by , reaching $278 billion. It’s light and compact, has high capacity and energy density, low maintenance, and a long lifetime. In addition, lithium-ion batteries are easily and quickly charged and have a low self-discharge rate. The weak points of this battery technology include high cost, inflammability, and intolerance to extreme temperatures, overcharge, and overdischarge.

Lead-Acid (PbA) Batteries

A lead-acid battery is the oldest battery technology and is also one of the cheapest and most available solutions that find use in automotive and industrial applications as well as power storage systems. PbA batteries are highly recyclable and can operate effectively at both high and low temperatures. Valve-regulated lead-acid (VRLA) batteries are more suitable for power storage solutions than their older counterparts—flooded lead-acid batteries—as they have a longer lifetime, higher capacity, and easier maintenance. Slow charging, heavyweight, and low energy density are among the major drawbacks of this battery technology.

Nickel-Cadmium (Ni-Cd) Batteries

This battery type prevailed in the market of wearable electronics until Li-ion batteries entered the game. Ni-Cd batteries have many configurations, they are inexpensive, easy to ship and store, and highly resistant to low temperatures. The technology is behind its competitors in energy density, self-discharge rate, and recycling. Nickel-metal hydride (Ni-MH) batteries use the same component as Ni-Cd technology—nickel oxide hydroxide (NiO(OH)). However, the Ni-MH battery chemistry provides better characteristics, such as higher capacity and energy density.

Sodium-Sulfur (Na-S) Batteries

A sodium-sulfur battery is a cost-effective technology based on molten salt. The advantages of Na-S batteries involve high energy and power density, a long lifetime, and stable operation under extreme ambient conditions. Nevertheless, this battery technology has a limited application area because of high operating temperatures (not less than 300oC) and sensitivity to corrosion. In addition, sodium is a hazardous component that is highly flammable and explosive. Sodium-sulfur batteries are well-suited for standalone energy storage applications integrated with renewable power sources.

Flow Batteries

Unlike conventional rechargeable batteries in which energy is stored in solid electrode material, flow batteries store energy in liquid electrolyte solutions. The most common flow battery type is the vanadium redox battery (VRB). The other types consist of zinc-brominezinc-iron, and iron-chromium chemistries. Despite their low energy capacity and low charge/discharge rate, flow batteries have several important advantages, allowing them to hold a large market share in on-grid and off-grid energy storage systems, including large-scale applications. These benefits involve an extremely long lifespan (up to 30 years), high scalability, fast response time, and a low risk of fires because flow batteries contain non-inflammable electrolytes.

As of , BESSs accounted for 7.5 % of the global energy storage capacity, significantly less than pumped-storage hydro. According to The Business Research Company, the battery energy storage market size is expected to reach $13.8 billion at 25.7% CAGR globally by . Given the availability, efficiency, and latest advances in electrochemical storage technologies, a BESS is anticipated to be an energy storage leader in the years ahead. However, alternative solutions can go up against battery power storage systems, getting the upper hand in some applications. Here are the main BESS competitors:

  • Pumped-storage hydroelectricity (PSH). As estimated by the International Hydropower Association (IHA), PSH systems store up to 9,000 GWh of electricity globally, taking up over 94% of the world’s energy storage capacity. In PSH, energy is generated by water that spins turbines when flowing down from a higher tank to a lower reservoir. This ESS can offer vast storage capacity at a reasonable price, meeting the needs of larger electricity networks. The biggest challenge with pumped hydro storage systems is that building them takes years and this needs hefty investments.
  • Compressed air energy storage (CAES). This type of ESS uses energy to compress and store air in an underground reservoir. When the need arises, the released air produces electricity by rotating air turbines. CAES systems are effectively used in production and mining industries. However, implementing this technology can be problematic for some applications, especially residential solutions.
  • Flywheel energy storage (FES). Applying energy to a flywheel increases its speed by far, generating rotational or kinetic energy which is stored and released later. FES systems are notable for their longevity (up to decades), easy maintenance, and fast response time. But they can only operate for short periods.
  • Thermal energy storage (TES). This ESS type can store thermal energy collected from an array of sources, including water, rocks, and molten materials—salt, silicon, and aluminum. TES systems have the potential to be widely used with renewable energy sources in heating and cooling applications.
  • Potential energy storage or mechanical gravity energy storage. The idea behind this ESS is to elevate heavyweights, such as concrete blocks, and drop them down when energy needs to be released. The technology is far from mainstream as of yet, but it could be promising for the energy storage market once it’s well-tuned.

Alternative energy storage technologies have already been available for the past few years. Some of them are already up and running, while others are still in the works. The sure thing about all of them is the need for reliable machine learning and artificial intelligence solutions. These would automate operations, reduce maintenance expenses, and ensure smooth performance with minimum human input.

BESS’s Coming to Your Aid

Choosing batteries for energy storage can be beneficial for several reasons. First off, battery storage ideas have no limits regarding location—you don’t need to provide huge water tanks or underground air reservoirs. Owing to its availability and flexibility, a BESS can fit in well with applications that require varying power and storage capacity levels. Moreover, modern battery technologies tilt toward light weight, cost-efficiency, safety, and environmental friendliness. Let’s consider the use cases of a battery energy storage system and the essential problems it can solve.

Load Management (Energy Demand Management)

BESSs help balance loads between on-peak and off-peak times. Electricity demands may vary depending on the day, time, season, and other factors. The higher the demand, the higher the electricity cost and vice versa—pricing gets lower during off-peak hours. By accumulating energy when the demand is low and discharging it in peak periods, battery storage solutions enable users to save on electricity tariffs (peak shaving).

Energy Time-Shift (Arbitrage)

As mentioned above, electricity prices fluctuate at different times, having both rises and falls. Battery energy storage systems allow for energy time-shifting—energy is purchased at a low price during off-peak periods and sold or used when the price increases. Thus, irrespective of the season and electricity demand, BESSs can equalize energy prices and minimize risks.

Backup Power

A BESS can supply backup power in case of an electricity grid failure until complete power restoration. Larger storage capacity and integration with renewable energy sources enable BESSs to back up energy for longer periods. By operating as an uninterruptable power supply (UPS), a commercial battery storage solution can be a time and money saver as it eliminates downtime.

Black-Start Capability

A BESS can replace a diesel or natural gas generator used by power plants to restore power generation after blackouts by leveraging its black-start capabilities. Based on battery storage, power systems can restart after a total shutdown without using external electricity networks. The fast response time of a BESS helps systems recover in the shortest possible time.

Frequency Control

Battery storage systems can regulate frequency in the grid, making sure its value lies within the required range. If the amount of generated power disagrees with the actual electricity demand, the frequency can either exceed or fall below its nominal value. Such discrepancies may result in temporary disconnections, power failures, or blackouts. BESSs can immediately react to power interruptions, providing sub-second frequency response, and stabilize the grid.

A BESS can likewise ensure voltage stability, maintaining its level within the specified range.

Renewable Energy Integration

Integrating battery energy storage systems with intermittent renewable energy sources opens the door to inexpensive electricity continuously available to on-grid, off-grid, and hybrid systems. More recently, clean energy has gained popularity as an economically viable and eco-friendly alternative to fossil fuels. According to Statista, renewable energy sources (hydro, wind, solar, bioenergy and other renewables) accounted for 30% of global electricity production in . Moreover, it is projected to reach 45% by . The proliferation of renewable energy-enabled storage solutions is extensively supported and incentivized by governments through subsidies and lower tax rates.

Battery storage technology enhances the efficiency of renewables. It makes them a reliable energy source for a variety of applications, including households with photovoltaics (PVs), off-grid commercial facilities, and isolated communities, such as islands and remote rural areas. Smart grids located in Rokkasho, a village in Japan, store solar and wind energy using a large-capacity BESS based on sodium-sulfur batteries. Currently, there are 92 wind power generation facilities and 3 solar power plants with a total capacity of 313,350 kW.

A BESS assists grid-tied and hybrid solar and wind systems with energy time-shift and demand-side management. For example, in windy weather, the system can power homes and charge batteries during on-peak and off-peak times respectively. Later, the battery energy storage system wind power can be used when the electricity demand is high and the variable energy resource is unavailable. Such a system has been installed and is running successfully in the Faroe Islands. Now, wind turbines generate power that covers about 50% of the islands’ energy needs.

Transmission and Distribution (T&D) Deferral

Battery energy storage can eliminate the need to build new transmission and distribution systems or update existing T&D assets that lack capacity or become obsolete. By storing excess energy and providing reserve capacity, a BESS can take the load off overloaded T&D lines and prevent congestion in transmission systems.

Microgrids

A BESS is an essential part of microgrids—distributed power networks that can be connected to the utility grid or totally independent. Standalone microgrids located in remote regions can rely on battery storage systems integrated with intermittent renewable energy sources. Such solutions enable smooth power generation and help avoid heavy expenses and air pollution associated with diesel generators.

BESSs find wide use in different industries and application areas. For example, front-of-the-meter (FTM) applications comprise battery storage systems in electric power systems, such as utility-scale generation and energy storage facilities as well as transmission and distribution lines. Behind-the-meter (BTM) applications embrace transportation, including electric vehicles and marine systems, residential, commercial, and industrial battery storage solutions.

The Vistra Moss Landing Energy Storage Facility in California, USA, is the world's largest battery storage system. The 400 MW/ MWh BESS was commissioned to work in December . The storage capacity is expected to reach 750 MW/ MWh by the summer of .

Vistra, the retail electricity and power generation company previously criticized for climate pollution, is shifting its focus to renewable energy, doing its part to protect the environment and create new jobs.

Some of the world’s largest battery energy storage systems are the Alamitos Energy Center, Gateway Energy Storage (US), Hornsdale Power Reserve (Australia), Minety Battery Energy Storage Project (UK), Buzen and Rokkasho battery power plants (Japan), Korea Zinc Energy Storage System (South Korea), and Kunshan Energy Storage Power Station (China).

In , 4,027 MW / 12,155 MWh of battery energy storage was deployed in the US, compared to 3,000 MW / 9,500 MWh added to the grid in . As analyzed by Frost & Sullivan, the decrease in technology cost and rapid spread of renewables will boost the global grid battery storage capacity to 134.6 GW by .

BESS: To Buy or Not to Buy

The global energy storage market offers a great choice of off-the-shelf battery energy storage systems. They vary in battery chemistry, scale, functionality, intended use, and price. Here are some of the key BESS market players:

  • NextEra Energy - This company is the world’s largest generator of renewable energy from wind and solar. It is one of the global leaders in battery energy storage capacity and number one in the US with the largest amount of operational storage.
  • ABB - This Swedish-Swiss multinational corporation manufactures battery energy storage systems for solar applications. Their product range includes Li-ion battery-based modular solutions for households, smart transportation systems, utilities, and industrial applications.
  • BYD (China) - One of the largest manufacturers of all types of rechargeable batteries worldwide, BYD produces energy storage systems for various applications. Their product line comprises large-scale utility BESSs, modular battery-based ESSs for commercial use, and MINI ES products—small-sized battery storage devices.
  • Panasonic (Japan) - Panasonic is the manufacturer of EverVolt home battery storage solutions that can store solar power with 11 to 120 kWh storage options. EverVolt uses Panasonic Li-ion battery cells.
  • Toshiba (Japan) - Toshiba offers SCiB systems—medium and large-scale Li-ion battery energy storage solutions. These systems serve public, commercial, and industrial needs.
  • Fluence - This is a joint venture between Siemens (Germany) and AES (USA) that offers three battery energy storage products: Gridstack (grid-scale energy storage system for industrial applications), Sunstack (solar energy storage system), and Edgestack (commercial energy storage system).
  • Samsung SDI (South Korea) - Samsung is one of the leading global manufacturers of Li-ion rechargeable batteries. Their battery energy storage systems range from kWh to MWh and find use in homes, power plants, utilities, and commercial facilities.
  • LG Chem (South Korea) - LG provides battery solutions that accumulate and store solar energy to power homes without using electricity from utilities. The LG Home Battery RESU systems have a compact size and use lithium-ion batteries.
  • General Electric (USA) - GE manufactures a broad spectrum of battery energy storage systems that can be used for standalone applications and integrated hybrid solution applications, relying on solar, wind, and thermal power.
  • Hitachi (Japan) - Hitachi produces modular battery energy storage systems with Li-ion batteries for indoor and outdoor locations. These systems are designed for commercial and industrial applications and can be combined with solar and wind energy sources as well as diesel generators.
  • Tesla  (USA) - Powerwall and Powerpack are the two major battery storage products made by Tesla. Both systems are based on rechargeable lithium-ion batteries. Powerpack aims at commercial and industrial applications while Powerwall can be integrated with solar energy for residential use.
  • NEC Corporation -  This multinational Japanese corporation produces battery storage containers ranging from 20 to 53 feet. NEC BESSs are based on their proprietary software platform called AEROS®.
  • Johnson Controls - This is a US manufacturer of containerized ESSs based on lithium-ion batteries. Their distributed energy storage systems are designed for applications that supply from 50 kWh to 200 kWh and from 150 kWh to 5,000 kWh.

The global battery energy storage market is abundant in offers. As battery costs tend to fall, ready-made BESSs become more affordable to consumers. According to Statista, the price for lithium-ion batteries (that prevail in battery-based energy storage) has dropped by 90% in the past 11 years—from $1,220 in to $132 in per kilowatt-hour. But at the end of the day, the battery price will depend on the project size and storage capacity—small-scale projects will be charged higher than the average price.

Apart from the batteries, the total battery energy storage system cost consists of the cost of an energy management system, a BMS, a power conversion system, or inverter, and other components. Utilizing an out-of-the-box BESS may also entail expenses on installation, operation, maintenance, and warranty. For example, Tesla’s Powerwall provides 13.5 kWh of usable storage capacity, and its price can amount to $10,500, including the solar panel system and installation costs. Panasonic EverVolt allows for storing between 11.4 kWh and 17.1 kWh of energy, which will cost from $15,000 to $20,000 with solar panels, installation, and set up.

When choosing a battery energy storage system, you should consider plenty of factors other than its cost. They include:

  • system completeness and availability of related subsystems and supporting equipment;
  • chemistry, safety, and other characteristics of the battery;
  • quality, availability, and supply continuity of hardware components;
  • software reliability.

Thus, BMS software plays a significant role in the overall performance of a battery storage system as it is responsible for charging and discharging along with battery safety.

Once you are set to buy an off-the-shelf battery energy storage system, make sure you or your staff have enough expertise and qualifications to check the quality and completeness of the entire system before making a purchase and supplying it to your customer.

Setting up, maintaining, and supporting a BESS may also require personnel training on your side unless you’re ready to pay for these services to the BESS provider. When buying a battery storage device, make sure the manufacturer offers a warranty that covers the repair or replacement of the system and its components in case of failure.

Purchasing an out-of-the-box BESS can definitely save your time, especially if you need a turnkey solution with no specific consumer requirements for the system. With a rich selection of battery energy storage products on the market, there is a high chance of finding a reliable manufacturer and a suitable option that could meet your customers’ needs.

Conversely, ready-made systems may have unreasonably priced electronics, pre-installed software of poor quality, and unnecessary features that add to the cost. They may also lack features desired by the end user or fail to satisfy the consumer’s industry and business niche demands or operating conditions and location requirements. In addition, not all BESS suppliers provide all-in-one solutions, and purchasing components and subsystems from different manufacturers can result in serious compatibility and interconnection issues. Developing a custom battery energy storage system can become an alternative that is worth looking at.

Building a BESS: Pros and Cons

Tailor-made BESSs can make up for what’s lacking in out-of-the-box solutions offered by major battery storage systems providers. So, they can meet the exact needs of your potential consumers. However, implementing a custom product is a time-taking and resource-consuming task. Building a battery energy storage solution belongs to large-scale, long-running projects that can last for months or even years.

A BESS is a complex, multilayer engineering system, so developing a battery-based storage solution from the ground up requires deep knowledge in various fields, including battery technologies, power electronics, and embedded software development. In our upcoming articles, we’ll cover challenges associated with developing and implementing battery energy storage systems.

Choosing the right development team is half the battle; that’s why it’s essential to hire well-trained professionals with relevant experience. Creating a battery energy storage system from scratch takes specialists in electronic design, electrical engineering, low-level firmware, high-level software, and mechanical engineering for enclosure design.

The Integra Sources team could be the right fit for your project. We design PCBs for battery management, bi-directional power conversion, energy management, and safety systems of a BESS. Our engineers implement monitoring and control software and provide online data communication for remote BESS management. We create scalable battery energy storage solutions with fast response time, quick ramp rate, and high-efficiency power supply. Integrated with either electrical grids or renewables, our BESSs can serve for load management, power backup, frequency and voltage regulation, energy time-shifting, and many other purposes.

Manufacturing is another important challenge you’ll have to face when making your own battery energy storage product. The BESS manufacturing process involves a diversity of tasks that can be carried out at different production facilities. So, synergy is the key to efficient BESS manufacture.

You’ll have to take care of the product certification too. Apart from international standards, such as IECISOIEEE, and UL, a BESS is highly likely to need to meet specific national standards and certification requirements in each particular country. For example, in the United States, an energy storage system must also conform to the regulations of the Federal Energy Regulatory Commission (FERC), the Department of Energy (DOE), and some regulatory agencies at the state level.

In October , Australia and New Zealand developed AS/NZS :—a joint standard that sets general installation and safety requirements for battery energy storage systems. In addition, Australian BESS manufacturers must comply with a number of other national and international codes and standards.

Certification criteria may also depend on the industry and application area of a BESS. For example, DNV provides a recommended practice that contains guidelines for design, performance, operation, maintenance, and safety for energy storage used in marine systems. The document comprises specifications for charge/discharge rate, SOC, SOH, DoD, and many other system parameters and operating conditions.

The engineering team engaged in BESS development must be well-versed in the certification requirements and applicable standards. This helps mitigate risks in the system’s design and delivers a high-quality product to your end user on time and within budget.

Despite the challenges, designing a bespoke BESS can enhance usability, reduce operating costs, and improve the reliability of the system. After drilling down the market, you can heed the customers’ needs, consider the shortcomings of off-the-shelf BESSs, and create highly sought-after battery energy storage solutions.

Implementing your own product makes you independent of any particular BESS provider and its services. You can set up, maintain, support, and deliver other services to your customers in a prompt manner and without intermediaries.

Conclusion

A BESS is a multi-component energy storage system able to store varying amounts of electrochemical energy and use it later for a range of purposes—be it peak shaving, energy arbitrage, or a black start.

The advances in battery technology make a BESS a light and affordable solution for both residential and commercial use, including smart homes, large-scale industrial facilities, and utility grids. Buildings, villages, towns, and even entire islands can employ battery storage integrated with green energy for a reliable, self-sufficient power supply.

BESS manufacturers offer a wealth of options with various storage capacities and for any application and budget. However, purchasing an off-the-shelf system demands strong knowledge of the technology, and a ready-made BESS may not meet the specific requirements of an end user.

Battery power: the future of grid-scale energy storage | Climate Now

Transcript:

James Lawler: [00:00:00] Welcome everyone to Climate Now, a podcast that explores and explains the ideas, technologies, and the practical on the ground solutions that we’ll need to address the global climate crisis and achieve a net zero future. I’m James Lawler, and if you like this episode, leave us a review wherever you get your podcasts, share it with your friends, or tell us what you think at .

Today in our interview segment, we’re going to discuss grid energy storage, the different types of energy storage available, and if it’s economically feasible for batteries to support a hundred percent renewable energy electricity grid. Our interview will be with Nate Blair, an engineer at the National Renewable Energy Lab, or NREL, one of the premier energy storage research labs in the United States.

This Week in Climate News

But first, our news segment: This Week in Climate News. Today, to discuss what’s going on in climate news, I’m joined by Darren Hau, staff manager of charging ops and product strategy at the autonomous electric vehicle company, Cruise.

Darren, welcome back.

Darren Hau: Hey, thanks for having me back, James, [00:01:00] happy Thanksgiving to you, or rather welcome back from Thanksgiving. Hope you had a good one.

James Lawler: Likewise, likewise. What did you… what did you get up to?

Darren Hau: Oh, nothing much. Stayed local. Just spent some time at the beach enjoying California.

James Lawler: Mm-hmm. Mm-hmm.

Darren Hau: What about yourself?

James Lawler: Upstate New York. Warm weather, which would be particularly surprising. It was so warm that I found myself on the New York, New York State website looking at projections for the future climate in New York. And they have a, a sort of dispiriting graphic that shows the state of New York migrating south over the next several decades.

And I think that under sort of a business as usual case by , we’ll be somewhere around the latitude of Georgia, basically Southern Georgia.

Darren Hau: Oh, that’s, that’s interesting. So I know most climate maps show kind of a heat map of the U.S., but is this a graphic that shows different states actually moving

James Lawler: Yes.

Darren Hau: In time or in space? That’s, that’s pretty fun actually.

James Lawler: Yeah, it shows New York. I hate to [00:02:00] start off This Week in Climate News with such doom and gloom.

Darren Hau: Well, this, this is a good segue to your little point about Qatar and how the temperatures…

James Lawler: Yes, that’s right. One of the items in the news obviously is soccer or football. The World Cup kicked off in 90 plus degree Fahrenheit temperatures. It’s interesting, since Qatar won its bid for the World Cup, which was 12 years ago, they’ve been planning for this. The average annual temperature in Qatar has increased around one degree Celsius or almost two degrees Fahrenheit according to the Journal Nature, in a story that was just published the other day.

Darren Hau: You know a lot of people say climate change is an existential risk. I’m probably not as alarmist. I don’t think we’re gonna go extinct, but there’s definitely going to be a very severe degradation in quality of life if we don’t address it. And if you think about the issue with Qatar, you know, if average temperature is rising two degrees, that means that the peak [00:03:00] temperatures, right, because we’re talking about average here, are actually gonna be much higher than that.

And it’s, this is already a desert and they’ve been focusing on spending and constructing and trying to shift the economy to a more kind of tech forward future. But if temperatures are fluctuating, getting higher and higher, those are days when construction workers can’t go out and build stuff. Right?

Just to use a simple example, you mentioned athletics, talking about construction, so that’s gonna have a significant impact on just economic growth throughout the world.

James Lawler: Yeah, absolutely. Another interesting article that we picked out this week is about the transformation of gas stations and what the future holds for the automobile fueling business whether you’re thinking about gas or electricity. David Ferris had an article in Politico about this recently titled “The Gas Station’s Hidden Battle to Survive.”

Darren Hau: Yeah, I’m actually really interested in this article because, as you know, this is my bread and butter, what I deal with every day. But essentially what David Ferris was mentioning was the complex dynamics between the utility industry and the gas station [00:04:00] industry and how they’re actually quite upset with each other these days. So for a bit of context, there is a ton of money on the line in Biden’s bipartisan infrastructure bill. They allocated seven and a half billion to help fund the build out of EV charging infrastructure. And obviously that’s not nowhere near enough to what we need, but it’s an important and substantive step.

James Lawler: And that’s contemplated to build something in the order of 500,000 fast chargers, right?

Darren Hau: I don’t recall the exact number, but that sounds about the right order of magnitude, yeah. In addition to the dollars on the line, we’re at this massive inflection point today, which is who gets to fuel the transportation system of tomorrow? Historically it’s been oil majors and gas stations, and now utilities want in, and both of these industries have market sizes that are in the hundreds of billions of dollars.

You will get efficient and thoughtful service from Powrloo.

So this, so this is a really tense situation here. One of the reasons there’s this huge tension between these two industries is they’ve developed in very different ways. So the gas [00:05:00] market is extremely transparent and hyper competitive. Any driver can go and say, “Hey, that store across the street is 5 cents lower than this one over here.

Maybe I’ll go to that one,” so the drivers know exactly what they’re getting at every single location. Contrast that with the electricity market. How many people can actually tell you how much they’re paying per kilowatt hour of electricity at their home? I can’t. I have no idea what it is. It’s extremely opaque and part of the reason is because it’s very monopolistic.

When the electricity system was being built out, it didn’t make sense to have multiple parties trying to send separate wires to your house, so you needed a bit of a regulatory landscape for it. What has happened then is each utility gets to set a certain rate for you and they’re the only one that provides it, and then they recover the expense that they incurred by charging you your electricity tariff. But gas stations see it as: “well, if everything’s gonna be electric and we no longer sell fuel. What is, what are we in the business of?”

James Lawler: Right, right.

Darren Hau: And maybe playing off of what I just mentioned about the different [00:06:00] ways the industry’s developed, um, this is also a source of tension because the way utilities make money, as I mentioned before, is they spend a certain amount of capital, and then the public utility commissions will say, “okay, based on that, we’ll we’ll guarantee you a certain profit margin”. So gas station operators are concerned that if they’re competing with utilities, selling EV charging, utilities can undercut them by selling at rock bottom prices because they have a guaranteed rate of return that they can make up with retail electricity rates.

James Lawler: Right. Yeah. And that’s kind of the crux of the issue, isn’t it? It’s like they’re, they’re playing by different rules.

Darren Hau: Yeah. That’s a great way to summarize it.

James Lawler: Right. So on a related note, Tesla just recently made its technical specifications and design specifications for its charger public and has recommended that this be the North American, what is it?

Darren Hau: North American Charging Standard or NACS,

James Lawler: North American Charging Standard. So they make the point in this press release, which you can find on their website that the Tesla [00:07:00] charging network is about, you know, 60% larger than all the other networks combined, that its charger is, you know, mechanically the simplest, and that it involves the fewest moving parts, it doesn’t rely on special communication between the charging device and the auto and the car. So Tesla’s making the argument that everyone should now adopt this charging standard. Darren, you were involved at Tesla in designing that whole system. What, what do you make of this?

Darren Hau: I think this has been a very controversial thing in the EV industry because yes, it’s true that Tesla is a technically superior product and operationally superior product, but you know, we have all this momentum behind the the CCS standard, the Combined Charging System Standard which is prevalent in Europe. There’s a different variation of it in North America, and all the OEMs have basically adopted the CCS standard by this point: like GM, Ford, original equipment manufacturer. Some people have accused [00:08:00] Tesla of being somewhat hypocritical saying, “Hey, why didn’t you release a standard earlier?

Now you’re, the only reason you’re doing this, frankly, is because. Biden’s, uh, climate and infrastructure bills have basically allocated funding that is available only if you’re charging station can charge more than one brand a vehicle.” So for Tesla, there is an incentive to have someone else adopt that so that they can tap into those funds.

James Lawler: Interesting.

Darren Hau: What’s interesting is there is one startup that is very keen on doing this, it’s called Aptera. They make this very like small solar powered, super efficient vehicle that has basically said yes, they’re gonna adopt it. So, It’ll be interesting to see whether that alone is enough for Tesla to tap into those credits.

James Lawler: You know, with all this talk of electrification, one of the things that the world will need a whole lot more of is copper. And there’s some interesting news this week on some developments in the copper mining industry.

Darren Hau: I’m not an expert in mining, but I find it fascinating. So let’s take a step back and ask why is copper important? Well, we were just talking about [00:09:00] the electrification of transportation. And speaking of which, an EV requires two and a half times as much copper as an internal combustion engine vehicle, and that’s just the transportation industry. Solar and offshore wind needs two to five times more copper per megawatt of capacity than power generated using natural gas or coal.

So all of this means that demand is, you know, going to skyrocket.

James Lawler: Yeah.

Darren Hau: So the challenge with this growing demand is that a new copper mine takes many years to bring online. I think the IEA, the International Energy Agency says it takes 16 years on average to get a new copper mine built. However, we do have a lot of unprocessed copper ore sitting around because we had no economical way to extract it.

What happens is ore is mined and the easiest metal is extracted in anything that’s too hard or expensive to convert to copper is just tossed aside as waste and in the past decade, they estimate that 43 million tons of copper have been mined, but never processed for this [00:10:00] reason, which is worth more than $2 trillion at today’s prices.

James Lawler: Wow.

Darren Hau: So this is obviously a big economic opportunity. So a company called Jetti Resources has uncovered a way to potentially solve this problem, and it’s a bit deep in the weeds, but essentially they found out, it’s kind of interesting for anyone interested in electronics, the surface of that sulfite ore which they call chalcopyrite is actually an n-type semiconductor. And during oxidative leaching, a copper rich surface forms on that, on top of that surface, which is a p- type semiconductor. So if anyone who knows semiconductors know when you have a p-n junction, you basically have a diode and that blocks further transfer of electrons, which basically halts the process of leaching.

So what they did, what Jetti Resources did is they found a way to break that layer that allowed the leaching to occur. And if this technology is successful and fully embraced by the industry, they [00:11:00] estimate that we could unlock 8 million tons of additional copper each year by the s, which is more than a third of last year’s total global mine production.

James Lawler: Wow. Wow. So copper is notoriously hazardous chemical to produce. And those $2 trillion or so that are, that are lying around in big piles of, you know, what is formerly been thought of as waste, you know, mine tailings, this new process can mine that waste essentially, and produce copper from existing mines. There wouldn’t be as much of a need to create new mines. As Darren mentioned, copper is ubiquitous, used more and more in our cars, buildings, and batteries. And with that, let’s dive into our interview today on energy storage. Thanks, Darren.

Darren Hau: Thanks.

Interview

James Lawler: Today I’m speaking with Nate Blair, who works at the National Renewable Energy Lab, or NREL in Golden, Colorado, outside of Denver. As the name implies, NREL focuses its efforts on basic [00:12:00] research and technologies around clean energy. Nate’s role there is to model what the electric grid across the United States will look like and what it will cost in the future to meet demand by accounting for changing resources and technologies . That will help us today as we unpack the topic of energy storage systems for the grid, which is becoming extremely important as society shifts to more renewable sources of energy like solar and wind.

Nate will help us answer some key questions, including why lithium ion batteries are becoming the default energy storage option for the grid. What will the future battery storage for the grid look like as renewables eventually dominate electricity production? And how does that future grid handle longer periods of time when the sun isn’t shining and the wind isn’t blowing?

We start with a conversation about lithium ion batteries. We then dig into some of the data and predictions from the [00:13:00] Storage Futures Study that Nate co-authored. We wrap up the conversation by exploring some of the potential strategies for addressing the intermittency of wind and solar, including other energy storage solutions like hydrogen.

All right, Nate, glad to have you with us today. Thank you so much for making the time to to be on the podcast.

Nate Blair: Oh, I’m really happy to be here.

James Lawler: Why don’t we start by hearing a little bit about your experience working in grid energy storage, and perhaps you could also define for us what that means in the first place.

Nate Blair: Sure. I think it’s been an interesting progression for storage and in particularly battery storage. We talk a lot about lithium ion batteries at the moment, which started back in the 90s, all the way in these consumer electronic devices. Industry started putting those into to vehicles. They started to grow them.

The cost really came down, and now people are looking at them to provide value to the electric grid often in [00:14:00] conjunction with what has also gotten cheaper in price, which is solar PV technologies. Many of us have been thinking about how do you deal with the variability of solar PV and wind, and there’s a number of ways to do that.

And historically, battery storage has been one of those ways, or energy storage in general, but it has been difficult to build more of that. So we have a, a really significant resource of pumped hydro storage in the US and we’ve looked at compressed air energy storage and there are other storage options out there.

But as you go to longer and longer time durations, we were looking at other options, maybe building more solar and other things. But now with the advent of cheaper lithium batteries, in particular, people are saying, okay, this is now an option for the grid to move energy around to provide capacity when the sun isn’t [00:15:00] shining, the wind’s not blowing, et cetera.

James Lawler: It’s worth noting here that pump storage hydropower is a type of hydroelectric energy storage that involves pumping water between lower and higher reservoirs to operate a turbine as it falls back. Hydropower accounts for about 23 gigawatts of energy capacity. To put that into perspective, we have about a hundred gigawatts of nuclear generating capacity in the United States. So it’s about a fifth. Compressed air energy storage is kind of like pumped hydro power. But instead of pumping water, these facilities compress and store air underground. When electricity is needed, the pressurized air is released. It expands and it drives a turbine generator to produce electricity.

While there are other types of storage systems, the NREL report covers 15 different ones. We’re going to focus on the combination of batteries and renewables because that represents the most cost effective scenario based on the NREL models. The cost of lithium ion battery packs in particular have dropped 80% over the last 10 years.

Let’s get back to Nate.

Nate Blair: There are [00:16:00] a number of electrochemical battery options. Right now we’re focused on lithium ion because there’s a cost advantage, but there are a number of people looking at zinc-air, sodium batteries, and there’s been a number of other ones that have kind of also been in this space as well.

They aren’t all appropriate for electric vehicles, which is what has in part driven some of the cost reductions in lithium ion batteries and there’s some chemical advantages to lithium typically too. So there’s a lot of effort going on there and that’s what has deployed… depends on what day you look at the numbers, but several gigawatts at this point in the US and there’s quite a pipeline of those to be deployed, and not just here but globally. And I think we are seeing lithium ion batteries deployed instead of natural gas peaking plants on the grid, which is sort of one of the potential big markets.

James Lawler: When we talk about energy storage, I think a lot of [00:17:00] people have in their minds the Duracell battery or the battery that goes in their device. But when we talk about storage for the grid, we’re actually talking about a couple of different types of storage services that matter, and I think this is often kind of a revelation to unpack this. I wonder if you might be able to do that.

Nate Blair: Sure. Well, I think maybe another way to think of it is what are the needs that the grid has, right? If you’ve ever been in your house and you’ve had the lights flicker maybe a slight change in voltage or a slight change in frequency. There are a lot of resources on the grid to try and make the frequency in the voltage stay as constant as possible. And so batteries , particularly short term batteries, so less than 30 minutes, can be providing some of that, where they’re kind of trying to raise the voltage or lower the voltage very quickly, faster than I can explain it actually.

So we’re talking about very short kind of microsecond type capabilities, and there’s ultracapacitors and [00:18:00] supercapacitors and a variety of flywheels kind of live in that space as well. People have maybe heard of those. So there’s that piece, and that kind of expands out in kind of a 30 minute or one hour kind of timeframe.

At the end of the day though when you think about, well, how many batteries could be deployed to meet that? It’s pretty small compared to the other two needs of the grid that are much larger. And so the second one, we would, I think you think about time shifting, right? You’re like, “oh, well I’m gonna save my solar from the daytime and use it at night.”

Right? That’s a totally normal thing. And we will eventually start to get there as we end up with so much solar on the grid that there are periods particularly in the spring and the fall where there’s more solar energy being produced than there is need for that on the load side. Right. So that’s time shifting.

But the last one is perhaps even providing [00:19:00] more value to the energy storage system, which is capacity. The way the grid works is you pick the peak day of power needs. This is the day when everybody’s using the most they can. So it’s typically a hot day, maybe a little wind, et cetera. The way the the grid operators work, they’re like, “well, we kind of have an idea of what the maximum load is.”

Then we add something called reserve margin, which is another 10%. So it’s like a safety factor, and we have to have that much capacity ready to bring online. And so batteries can sit there charged up for those days and provide that capacity value, and then in a lot of markets, they can get paid for that capacity value.

James Lawler: What does the curve look like for battery storage coming onto the grid? I saw recently that we added about a 170- something megawatts of capacity worldwide in . That then went up to megawatts, I think in . So there was more than a 10x [00:20:00] increase in the amount of battery storage we added to the grid in one year, which is a just like mind-boggling.

What is the trend look like over the next, let’s say year, five years, 10 years, you know, out to ?

Nate Blair: Yeah, that’s a really great question. I think we’re looking at like a five x growth in storage by in our storage futures scenarios. So this is not driven by any policy, didn’t include the Inflation Reduction Act. We didn’t have any of those incentives in there. This is just all kind of economic adoption and we started with kind of this two hour battery, then four, and then we start building out six hour batteries and then eight hour batteries as the shape of the peak day day kind of changes, but probably about a hundred to 650 gigawatts, which is, as these durations [00:21:00] increase, it’s like somewhere between 600 to over gigawatt hours in .

So in none of our scenarios did we end up economically not building storage. So that’s number one. In all cases, we built a significant amount of storage by , and then in some cases, if you had even lower PV costs and even lower battery costs, which might be reflective of some of the incentives that have now been passed, you get even to that higher end of the range where you get even more solar and batteries on the grid than you would if the cost reductions were more conservative in the future, or if they stayed, cost stayed flat. The other thing that I think is helpful to say is that part of the grid battery that’s gonna reduce cost the most is the battery pack.

So there’s a lot of other costs when you put something on the grid. So there’s the development cost and the boxes that you [00:22:00] put ’em in, and the land that you have to lease or buy, and the connection to the grid and all the planning and

James Lawler: Permitting.

Nate Blair: Yeah. And so the actual battery pack is less than 50% of the overall cost.

James Lawler: Oh, wow. interesting.

Nate Blair: But as the battery pack costs come down dramatically, the difference in costs between say a four hour duration battery and a six hour duration battery on the grid right now is maybe an extra 40% or something. But in the future, the step up to a longer duration in terms of costs will be lower, and so you might see utilities saying, “oh, well, our modeling says we maybe need six hours of battery duration right now. Let’s just buy eight hours to be safe,” right? So we, we anticipate that there might be some overbuilding on in terms of the duration of the, of the storage. Storage is tricky because we talk a lot in terms of gigawatts when we talk about solar and wind and other generators, but [00:23:00] in batteries, you’ve gotta talk about both the, the power and then the duration. And so the two of those together really create the overall cost.

James Lawler: I wonder if you could paint a picture, and it could be a range, if you like, of what do you think the grid and storage system looks like in five years and in 10 years? Looking forward, what combination of generating resources do we have? How much storage do you think we have on the grid? Are we able to get away from natural gas fired power or nuclear in that period of time, or are we still using those resources? Like paint that picture if you would.

Nate Blair: Yeah, sure. I think the five year picture, we don’t really even need to do a, a lot of complicated modeling cause because there’s utility plans that are out there that are quite robust at this point. We can also look at over the last couple years what’s been installed, for the grid and the bulk of that has been [00:24:00] solar PV , wind, and natural gas. There’s been a lot of announced retirements of coal plants and some of these other plants on the grid as well. So NREL has just released another study, which I’m not an author on, but it’s looking at how do we get to a hundred percent clean energy by , and looked at a whole range of different scenarios and different cost trajectories.

There are some where there is nuclear that gets built, you know, out towards or or more. Typically we run out to and look at a hundred percent there. But in our kind of typical set of assumptions, nuclear is quite expensive to build new nuclear, and so the model tends to pick a cheaper mix of options to provide that same kind of overall capacity for the grid. And so I think over the next five years you can look at what’s [00:25:00] in the pipeline, what’s being planned, what’s being developed, and we are headed towards. A larger and larger fraction of renewables on the grid solar PV, wind in particular as the two cheapest. We’re seeing a lot of plans for offshore wind as well.

And so that’s gonna continue to develop quickly. It’s been slower than the Europeans and there’s some geography reasons for that, but also just sort of a whole lot of other regulatory and other issues around that, so, so I think we’ll see more and more of that developing. What we have seen to date is for a lot of solar companies have started to put some level of battery storage with each solar plant.

To help smooth out the operations, provide for clouds coming by, et cetera. And I think we’ll continue to see some of those solar battery hybrids. Those are in the pipeline as well. And then we’re [00:26:00] gonna start to see, at least from our modeling, as we get into that kind of five to 10 year range, we’re gonna start to see the utilities saying, “Hey, it’s gonna be cheaper for us to deploy more of these batteries than to deal with, you know, ABC problem on the grid.”

James Lawler: That’s super interesting. What about this problem of longer periods of time where you don’t have wind, you don’t have solar. How will the grid deal with that in a regime where the generators are dominated by solar and wind? Is, will that just be better, like more batteries or?

Nate Blair: The way we have talked about it, at least, is you know, up to about 80% renewable energy on the grid annually.

You’ve got a, still got a significant amount of probably natural gas capacity, and that capacity can fill in those periods basically. And so it’s a couple of days or a week maybe, where it’s not [00:27:00] as windy, it’s not as sunny, and you’re gonna rely on some of this remaining fossil generation to provide capacity during those periods.

It gets more complicated because typically the whole country isn’t covered by a cloud, right? So you might be making solar in California and shipping it to Las Vegas, which happens to have a storm coming through, or vice versa, right? You’ve got clouds in San Francisco, but you know, in the Central Valley of California, it’s still sunny.

So there’s a lot of opportunities to share that burden. One of the things you saw in Texas where they had this outage was that Texas isn’t very well connected to the rest of the country and the fact that they’re not well connected, they couldn’t buy power quickly from the eastern US and import it across transmission lines.

Where we really have a lot of questions still is as you approach a hundred percent renewable energy on the grid. That’s an area where there’s a lot [00:28:00] of interest in modeling that and analyzing that, and that’s one of the things we’re doing quite a bit of. And at that point, you start to see two things are needed, one of which is so what we call long duration storage.

So that’s more than diurnal or more than 10 hours of storage and probably less than a week or so. That’s kind of in that long duration storage bucket. There’s another bucket called the seasonal storage bucket where you say, “geez, we’ve got so much solar and wind in the spring and the fall.” But you know, the cheapest thing isn’t to build enough solar to always meet that peak in the summer. Maybe we can make hydrogen in the winter and in the spring and use that hydrogen either in a combustion turbine or a fuel cell during the peak of the summer. And so in the US in particular, we have these seasonal shifts that people are start to say, “what’s the optimum way to to handle that?” And then is [00:29:00] there a seasonal storage option? And in our modeling, if you achieve some of these green hydrogen cost points, then the models build out kind of these hydrogen or perhaps biofuel combustion turbines that can store hydrogen for months and months and months, and then really use it during these peak periods, which in the US are in the summer.

James Lawler: Very interesting. So my last question for you, Nate, is one, one that we actually get a lot in comments are… A lot of people are thinking about this. But the grid build out. So the actual, you know, investment in building transmission lines to accommodate increase use of electricity, increased, you know, renewable generators.

What kind of projections do you make there, and will that be a limiter in any way on our energy transition?

Nate Blair: Yeah, that’s a good question. I think, NREL has looked at, you know, the, there’s sort of three grids in the [00:30:00] US.. There’s the Eastern grid, the western grid, and Texas grid, as I just mentioned. And there aren’t good connections between them, and so if there were really strong transmission connections between them, that would lower the overall cost of the transition because you could build… say you could build solar in the tiniest parts of the country and ship some of that power to more cloudy parts of the country. However, building transmission is difficult in the US and so we also do modeling where we don’t build out, where we don’t allow the model to build out more transmission at least large scale transmission around the country.

It can still build some local transmission, but, and what we find there is, you achieve the same goals, potentially, particularly like if your goal is a hundred percent renewable energy, you can achieve the same goals. A couple things generally happen. One is the cost is [00:31:00] higher cause the model would love

James Lawler: Because you’re overbuilding.

Nate Blair: Yeah.

James Lawler: You’re effectively overbuilding.

Nate Blair: Well, no, I wouldn’t say you’re overbuilding, but what you’re doing is building in a less optimal spot. And so what you see is that, you know, the windiest parts of the country are in the Midwest. And what we, what we see if we don’t allow new transmission to build out is you start building wind farms outside of that area.

And the wind industry has actually done a lot in the last 20 years to say, “Hey, let’s have wind turbines that are optimized for less windy areas.” They call those low wind speed turbines…. very creative. And then we also have the turbines that are in the mid Midwest that are, you know, really built for stronger, more persistent winds. And then, we’ll, what we’ll see is solar being built all across the country much more so than if you allow the transmission to be built. So you’re, you’re basically building, a little more wind, a little less efficient wind, a little less efficient solar, but you’re [00:32:00] building it in other places basically.

And then the batteries kind of go. In general, we’re building batteries around the country, you know, particularly close to where the loads are. And what you see with without building new transmission is you build some additional battery storage to help keep from overloading the existing transmission grid. So it stores it and then dumps it later when that grid isn’t as congested.

That was Nate Blair with the National Renewable Energy Lab talking about how battery storage will potentially play a huge role in an electric grid, powered primarily by the sun and wind. One key takeaway from the Storage Future Study that we did not talk about is that the modeled scenarios result in significant decarbonization, how our emissions are projected to drop between 46% and 82% compared to levels while the share of renewables to the grid would climb somewhere between 43% and 81% nationally [00:33:00] by . That’s it for this episode of the podcast. For more episodes, videos, or to sign up for our newsletter, visit climatenow.com where you can also find links out to interesting information pertaining to this episode. We hope you can join us for our next conversation.

For more energy storage sports equipmentinformation, please contact us. We will provide professional answers.